Leveraging the *Connecting Representations* Instructional Routine for student and teacher learning.

Amy Lucenta
Grace Kelemanik

Share...discuss...reflect..

#MassMATE2017

#FosteringMPs

@AmyLucenta

@GraceKelemanik

www.fosteringmathpractices.com

AGENDA:

- Framing and background info
- Experience Connecting Representations
- Reflect on Math Practice 7
- Experience Connecting Representations
- Reflect on Student Supports
- Why is an instructional routine a high leverage tool for coaches and teacher educators?

What's an Instructional Routine?

Instructional Routine

"Designs for interaction that organize classroom activities"

Magdalene Lampert NCSM 2015

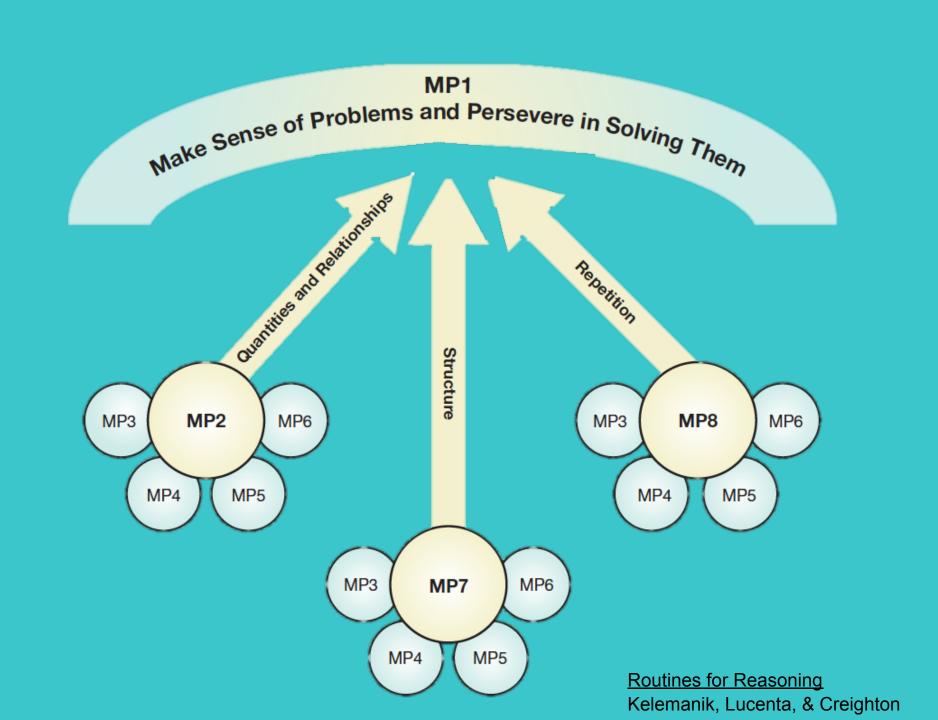
Practices are habits and habits are formed through routine.

Instructional Routines are designed to be repeated

Practices are habits and habits are formed through routine.

Instructional Routines

Are powerful tools for developing math thinking and math teaching practices.


Mathematical Practice

- Make sense of problems and persevere in solving them.
- Reason abstractly and quantitatively.
- Construct viable arguments and critique the reasoning of others.
- 4. Model with mathematics.
- Use appropriate tools strategically.
- Attend to precision.
- Look for and make use of structure.
- Look for and express regularity in repeated reasoning.

Effective Mathematics Teaching Practices

- 1. Establish mathematics goals to focus learning.
- Implement tasks that promote reasoning and problem solving.
- 3. Use and connect mathematical representations.
- Facilitate meaningful mathematical discourse.
- 5. Pose purposeful questions.
- Build procedural fluency from conceptual understanding.
- Support productive struggle in learning mathematics.
- Elicit and use evidence of student thinking.

Structural Thinking (MP7)

Attend to...

Organization and Properties of

Number and Space

Ask Yourself...

- How can I chunk this to make sense of it?
- How can I change the form to make it easier to work with?
- Can I connect this to something else I know?
- How can I use properties to uncover structure?

Put into Action

- Chunk complicated objects
- Change the form of objects
- Connect math ideas & representations
- Recall and use properties, rules of operations and geometric relationships

Connecting Representations

An Instructional Routine to Develop ALL Students' Structural Thinking

Connecting Representations

WHAT: Match visuals to expressions by chunking, changing the form, and connecting to math you know

WHY: To "think like mathematicians", to use mathematical *structure* to match two different representations.

Connecting Representations

Think

Make connections

Share & study connections

Create representation

Reflect on learning

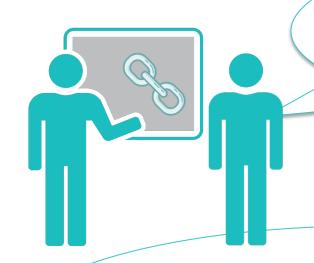
Think

Ask yourself...

What part of the visual will help me connect to a chunk of the expression?

What about the expression will help me connect to the visual?

Make Connections



"I saw... so I connected..."

"... connects to ... because ... "

Share & Study Connections

We noticed... so we ...
We knew... so we...

They noticed... so they ...
They knew... so they...

Ask yourself...

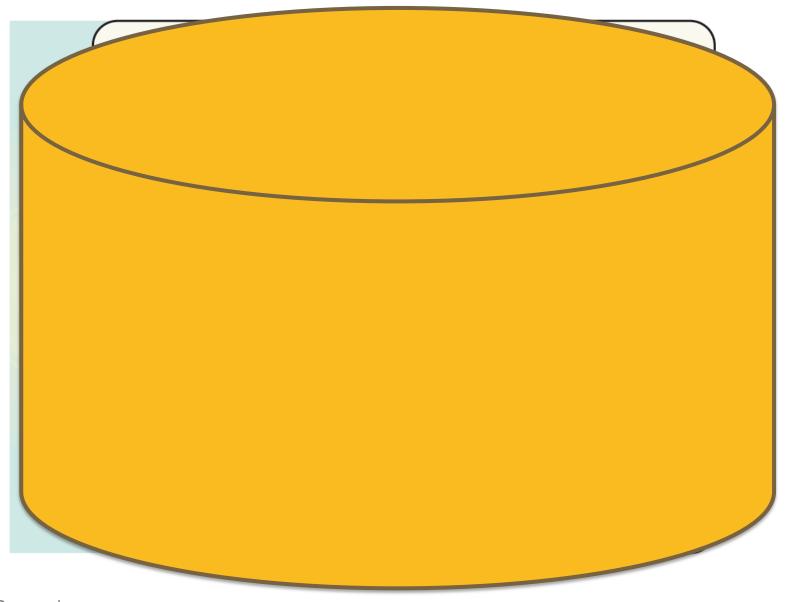
- "What do you notice about this expression?"
- "How can you chunk this expression into pieces you can describe?"

Pair

- Share your interpretations of the expression.
- Together create a matching visual representation.

They noticed... so they...

When they saw...it made them think of... so they...



Meta-Reflection

- A. When interpreting an expression / visual, I learned to pay attention to...
- B. When connecting representations, I learned to ask myself...
- C. A new mathematical connection I made is...

Connecting Representations Container

Reflect on CR Instructional Routine

What stands out to you about the Connecting Representations instructional routine?

What questions do you have?

MP7 in Connecting Representations

- MP7 Goal
 - To learn to "think like a mathematician" by connecting two things that look nothing alike at all, but represent the same underlying structure.
- Task selection that invites structural thinking
- Questions that orient attention to structure
 - What are the pieces of the visual and how do they connect to the rule?
 - How can you make sense of those pieces?
 - What do those operations imply?
- Meta-cognitive reflection focused on structure
 - I noticed.....so, I looked for....
 - ____ reminded me of ____

Connecting Representations

WHAT: Match words (verbal description) to graphs by chunking, changing the form, and connecting to math you know

WHY: To "think like mathematicians", to use mathematical *structure* to match two different representations.

Connecting Representations

Think

Make connections

Share & study connections

Create representation

Reflect on learning

Think

Ask yourself...

What part of the verbal description will help me connect to a chunk of the graph?

What about the graph will help me connect to the words?

Make Connections



"I saw... so I connected..."

"... connects to ... because ... "

Share & Study Connections

We noticed... so we ...
We knew... so we...

They noticed... so they ...
They knew... so they...

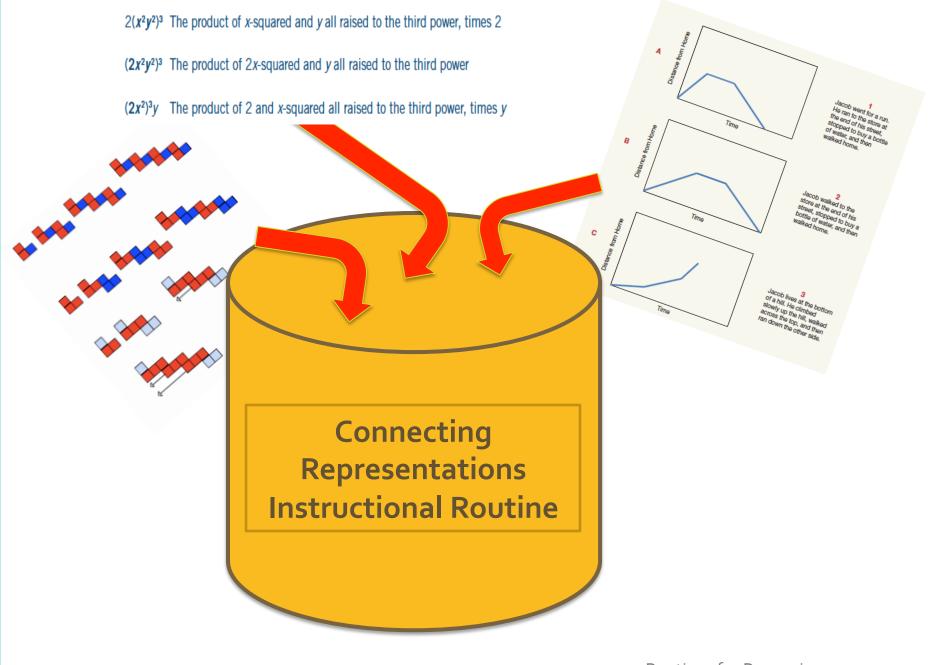
Ask yourself...

- "What do you notice about this graph?"
- "How can you chunk this graph into pieces you can describe?"

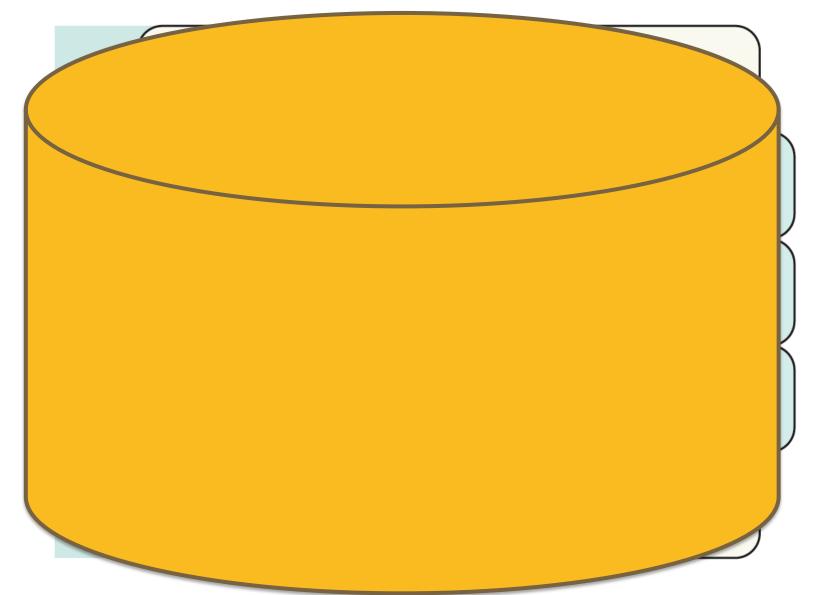
Pair

- Share your interpretations of the graph.
- Together create a matching verbal description.

They noticed... so they...


When they saw...it made them think of... so they...

Meta-Reflection



- A. When interpreting a *graph/ description*, I learned to pay attention to...
- B. When connecting representations, I learned to ask myself...
- C. A new mathematical connection I made is...

Routines for Reasoning
Kelemanik, Lucenta, & Creighton

Connecting Representations Container

Reflect on CR Instructional Routine

How does/can the Connecting Representations instructional routine provide access and support for SWLD to develop the math practices?

Essential Strategies

Annotation

Next time I will... before I calculate because

Paying attention to... Sentence Starters/Frames helpful because...

Four Rs: Repeat, Record Record

Ask Yourself Questions

Baked-In Supports for Students with Learning Disabilities within Connecting Representations

- Provide multiple passes at articulating the underlying structure between representations using the Four Rs.
- Reference **sentence frames and starters** to prompt students to articulate observations that sparked the structural thinking and that can be applied again in other math problems.
- Use **annotation** to make structural connections explicit for students and to provide visual residue of the mathematical discussions.
- Choose representations that support students' learning strengths.
- Support students' participation in full-group discussions by defining partner roles.

Baked-In Supports for ELLs within Connecting Representations

- Use sentence starters and sentence frames to develop structural language (e.g chunk, change, connect) and help students communicate structural elements of representations.
- Make use of the Four Rs to provide multiple opportunities to develop and refine academic language crucial for describing structural connections among representations.
- Ensure that **gestures and annotation** support the structural ideas and language and thinking that is being communicated verbally.

The Power of Routines

Instructional routines...

- support students
- are collaborative.
- free up brain space for the hard work.
- serve as vehicles for the Five Practices.
- save time.
- develop math practices over time.
- Wash, rinse, repeat.
-AND....
- Develop equitable practice in a classroom, school, district.

A Rationale

Teaching students to think and reason mathematically requires requires learning experiences that, among other things, position students to:

- "Engage with challenging tasks that involve active meaning making and support."
- "Construct knowledge socially through discourse, activity, and interaction related to meaningful problems."

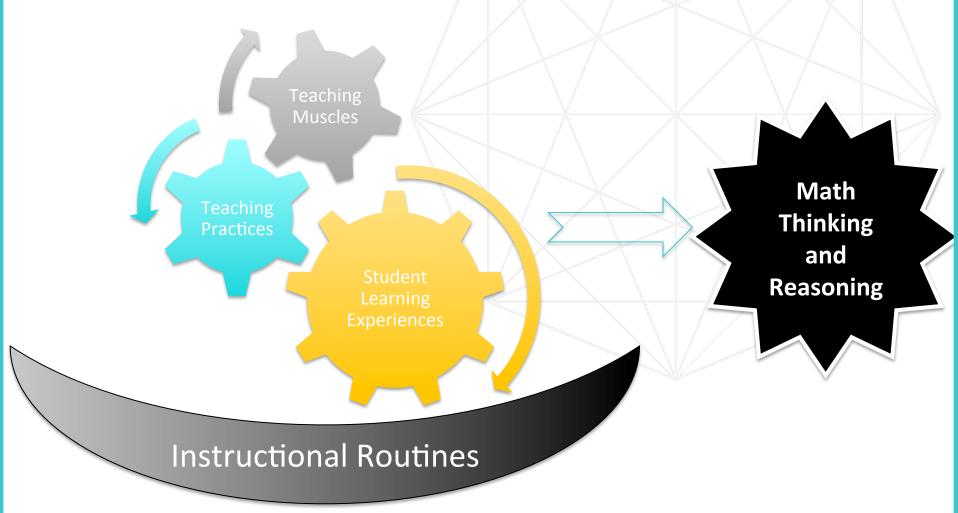
-NCTM Principles to Action, page 9

Creating and facilitating these types of learning experiences require certain high leverage teaching practices, e.g. NCTM Effective Math Teaching Practices.

- Establish mathematics goals to focus learning
- ♦ Implement tasks that promote reasoning and problem solving
- ♦ Use and connect mathematical representations
- ♦ Facilitate meaningful mathematical discourse
- ♦ Pose purposeful questions
- ♦ Build procedural fluency from conceptual understanding
- ♦ Support productive struggle in learning mathematics
- ♦ Elicit and use evidence of student thinking

For many using these teaching practices will mean developing different teaching muscles.

- ♦ Establish mathematics goals to focus learning
- ♦ Implement tasks that promote reasoning and problem solving
- **♦ Use and connect mathematical representations**
- **♦** Facilitate meaningful mathematical discourse
- **♦**Pose purposeful questions
- → Build procedural fluency from conceptual understanding
- ♦ Support productive struggle in learning mathematics
- ♦ Elicit and use evidence of student thinking



Why are Instructional routines powerful vehicles for building teaching muscles and developing teaching practices?

- They are predictable.
- They're routine, therefore provide repeated practice

They allow everyone to focus on high leverage teaching practices

- ♦ Establish mathematics goals to focus learning
- ♦ Implement tasks that promote reasoning and problem solving
- Use and connect mathematical representations
- ♦ Facilitate meaningful mathematical discourse
- **♦**Pose purposeful questions
- ♦ Build procedural fluency from conceptual understanding
- ♦ Support productive struggle in learning mathematics
- Elicit and use evidence of student thinking

How do you....

- Teach to the standards for mathematical practice?
- Ensure that ALL students-- including ELLs and students with learning disabilities— develop math practices?
- Shift and/or refine teaching practices?
- Increase collaboration between and among colleagues?
- Support coaching practices?

Instructional Routines...

- Develop the standards for mathematical practice,
- In ALL students-- including ELLs and students with learning disabilities.
- Help teachers develop NCTM's eight mathematical teaching practices.
- Support teacher collaboration.
- Support the work of coaches.

Today's Slides

Log On

www.fosteringmathpractices.com

Avenues of Thinking

Special Populations

Routines for Reasoning ~

Related Resources V

What We Offer

Teaching students to think and reason is perhaps the greatest challenge we face math educators, and these routines pro clear pathways to do so. 77

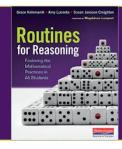
For More on Connecting Representations & Other Instructional Routines

Reach Out

AmyLucenta@gmail.com GraceKelemanik@gmail.com

Log On

www.fosteringmathpractices.com


Join the Conversation

#ConnectingReps #fosteringMPs

Get the Book

www.heinemann.com

